

Subtask B: Lighting Controls: Technological Aspects

Prof-Dr Marc Fontoynont, AAU- Denmark

ISES + IEA SHC Solar Academy Webinar 24 September 2020

2Bi – 24/09/2020

Lighting control: the upper-level of the <u>narrative</u> of lighting design

Beyond energy efficient light sources: the next step

Participants to subtask B

Marc Fontoynont, Sophie Stoffer (SBI-AAU, DK) Bruno Bueno Unzeta (ISE-Germany) Robert Weitlaner, (Hella), David Geisler Moroder (Bartenbach), Austria. Anne Bay, Per Reinhold (DCL, Denmark) Jan De Boer, Daniel Pimenta (IBP-Germany) Bertrand Deroisy, Ruben Delvaeye, (BBRI, Belgium) Bruce Nordman (LBNL – U.S.A.) Niko Gentile (Lund university, Sweden) Luo Tao (Beijing, China) Natalia Sokol (Gdansk, Poland) Barbara Matuziak (Trondheim University, Norway) Michel Angelo Scorpio, Sergio Sibilio (Aversa, Italy)

5 reports on their way...

Integration and	Integration and	Integration and	Integration and	Integration and
Optimization of	Optimization of	Optimization of	Optimization of	Optimization of
Daylight and Electric	Daylight and Electric	Daylight and Electric	Daylight and Electric	Daylight and Electric
Lighting	Lighting	Lighting	Lighting	Lighting
Subtask B. B.1. Survey December 2018	Subtask <u>B_B.2</u> Review of control systems June 2019	Subtask B – B.3-4 Trends and new systems November 2020	Subtask B – Section 5 – User Interface Draft document August 2020	Subtask B – B.6 Link with Standardization activities March 2021
IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and	IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and	IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and	EA SHC Task 51 / EBC Annex 77: Integrated Solutions for Daylighting and	IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and
Electric Lighting	Electric Lighting	Electric Lighting	Electric Lighting	Electric Lighting

Subtask B.1. Survey on context Draft document December 2018

IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

Survey on context of controls of lighting and shading

Interviews of more than 100 professionals in Denmark, China, Belgium, Norway, Poland, Austria, Sweden, Italy and Germany

On topics related to:

- Energy aspects (reduction of lighting consumption, benefits of shading...)
- Operational aspects (maintenance, commissionning, etc.)
- Desire from owners (future proof, costs,
- Occupant control (automatic vs manual , override, etc.)
- Consequneces on occupant comfort
- Control functionalities (open source?; connected to BMS)
- Other issues...

Subtask B.1. Survey on context Draft document December 2018

IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

Survey on context of controls of lighting and shading

Results so far:

- 1. Contribution to reduce lighting electricity consumption
- 2. Robustness and warranty
- 3. Easy Commissioning (and re-commissioning)
- 4. Standardized solutions
- 5. Investment costs and running costs
- 6. Simplicity of operation
- 7. Override (shading). Manual control
- 8. Individual task / ambient controls
- 9. Glare control from windows
- 10. Concern for well-being of occupants
- 11. Future proof
- 12. Compatibility with BMS, HVAC
- 13. Wireless Internet gateway

Subtask <u>B_B.2</u> Review of control systems June 2019

IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

Review of systems

Review of « strategies »

Reducing energy use through

- Lighting only when spaces are occupied (occupancy sensors) or time based (fixed, adjustable)
- Dimming of swiching-off lights as a function of daylight
- Constant light output over duration of use
- Shading for visual comfort (protection from glare) and possible reduction of heat gains

Architecture

- Centralized / localized / mesh
- Closed loop / open loop / Internet of things (IoT)

Mapping of solutions as a fonction of the energy saving potential

Solutions and trends

Review of market structure and drivers

Residential and non-residential Dimming vs on-off (sytem consumption?) External / internal shading Motorized / non motorized shading Security issues

Lighting control options

Ceiling lighting options (per lines or zones) Task lighting per workplace

Solutions and trends

Strategies for communication (hardware)

Wired / wireless Analog, phase dimming, DALI,

DMX, KNX, Bluetooth, Zigbee, etc.

Centralized Gateway to Internet

Communication protocols POE (Power Over Ethernet)

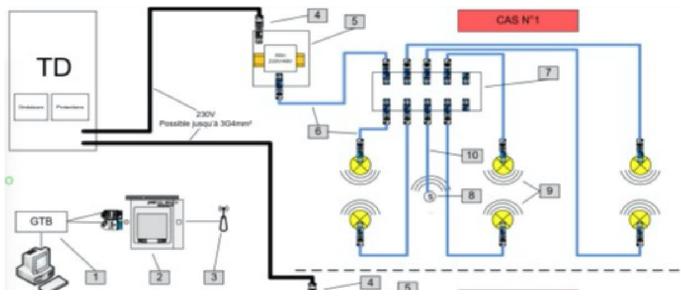
DC Powered (48 V) Battery-less sensors and switche Geolocalization chips (commissioning) AV devices and security IT wireless access device Lights

DC ceiling grid

Occupancy and

daylight sensors

Optional on-site DC power


AC branch power

HVAC actuator

48 V DC Electrical Architecture

Suppression of AC/DC converters for each luminaires

Use centralized high efficiency converters (0.5 KW to 2KW, eff 95%)

Use plug ad play ceiling lights without need of electricians

Possible link to Photovoltaic power supply.

Will benefit of cheap components for electric automobile industry (48V DC) Gateway to internet through wireless data exchange. (chip on light engine) *On-going tasks: standardization, certification, safety issues, etc.*

SBi – 24/09/2020

Strategies for communication (software)

Protocols: frequency, Issues with distance, indoor/outdoor, energy use, data rate, triggering, latency, size, open application, etc.

Variable	Wi-Fi	Z-Wave	ZigBee	Thread	BLE
Year first launched in Market	1997	2003	2003	2015	2010
PHY/MAC Standard	IEEE 802.11.1	ITU-T G.9959	IEEE 802.15.4	IEEE 802.15.4	IEEE 802.15.1
Frequency Band	2.4 GHz	900 MHz*	2.4 GHz	2.4 GHz	2.4 GHz
Nominal Range (0 dBm)	100 m	30 – 100 m	10 – 100 m	10 – 100 m	30 m
Maximum Data Rate	54 Mbit/s	40-100 kbit/s	250 kbit/s	250 kbit/s	1 Mbit/s
Topology	Star	Mesh	Mesh	Mesh	Scatternel
Power Usage	High	Low	Low	Low	Low
Alliance	Wi-Fi Alliance	Z-Wave Alliance	ZigBee Alliance	Thread Group	Bluetooth SIG
Wide area coverage	*	~	× .	~	-
Power efficient	×	~	-	~	~
High data bandwidth	4	*	×	×	

Subtask B.2 Solutions and Trends Draft document December 2018

IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

Lighting control as a "Pain Reliever" (or <u>problem</u> solver)	Lighting control as a source of "Value Creation" (offering new business <u>opportunities</u>)
Reduces lighting electricity use	Control specific lamps (wall washers, task, et.)
Makes lighting control more appropriate for occupants easier for occupants	New sensors and sensor location Open loop / closed loop
Make lighting control easier for occupants	Propose a user-friendly, simple and attractive interface
Make change of affectation of spaces easier (size of meeting rooms, size of offices, etc.)	Propose a full flexible module for control, beyond lighting (communication, displays, etc.)
Lighting controls when shades are pulled down,	Propose geolocalization services with lighting (LiFi)
Reduce glare from windows with shading	commissioning
Simplify closing of a house (global control)	Future proof (system which could adapt to evolutions of technology over time) : Updating through the internet: new software
Global warming increases risks of overheating, quality shading is necessary for more and more days	Interoperability (linked to other control systems and services, simplifies management, data, etc.)
Obstacles in deployment of DC powersupplies.	Make a house warmer during cold sunny days
Reburbishments	Make house cooler during warm sunny days
	Remote control from outside the building (facility management, user comfort)
	Anticipation of overheating: shading controls need to be more predictive and smarter (more data to collect)
	Flexibility can be related to future proof : update of systems
	Possibility to re-program the controls

Table: Analysis of lighting controls in relation with possible Value Proposition.

Subtask B – Section 5 – User Interface Draft document August 2020

IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

User interfaces

Categories: naalog, figital, hybrid

Components

Trends

Link to energy savings,

Combined control of lighting and daylighting

Consequence on possible occupant satisfaction

Subtask B – Section 5 – User Interface Draft document August 2020

IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

Light and dari

Tell your devices to

Turn off at

2. Which day?

Figure 2 Example of UI: Phillips Hue App interface – from left: 1) different light by slider, and currently set sources with their intensity shown t color 2) Selection of lighting scenes 3) A color control over lighting in selected room "Front Room".

Figure 3 Example of UI: Ikea Smart Home App interface – from left: 1) Dimming of rooms and specific light sources. 2) Setting dynamic control using clock and calendar. 3) Setting dynamic control over lighting by defining scenes.

Rise and Shine

Away from Home

Light and Dark

Subtask B.2 Solutions and Trends Draft document December 2018

IEA SHC Task 61 / EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

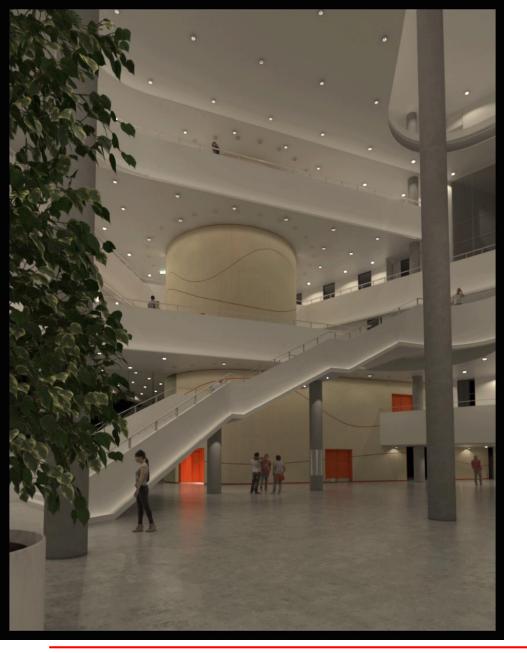
Global outcome / issues

- Effect on life time
- Reduced life time of lighting components (plug and play)
- Maintainance of flux output
- Holistic approach of costs: labor costs vs product costs
- Commissioning speed influencing technological choices

Subtask B activities	- B.6 Link with Stand	ardization
March 2021		•
IEA SHC Task 61 / E	3C Annex 77: Integrated Solutions for I	Davlighting and

Review of Standards

- Relevant standards
- New standards being developed
- Need for standards.



Virtual reality (VR) based Decison Guide

Interactive on-line tool showing examples of solutions being proposed and tested

<u>(Little demo)</u>

Three chanels demo, with electric power monitored.

To link lighting control and lighting effects and facilitate understanding of optimal power management.

18

SBi – 24/09/2020

